Product Code ::RXSOL-23-1305-025
Product Short Description: Removal of chlorine, After 25 seconds of contact, catalyzed sodium sulfite removed the chlorine content in a Ballast Water Treatment System. Most commonly used to reduce the residual chlorine
Product Description:

Enviro Guard Catalyzed sodium sulfite for corrosion prevention. Generally speaking, sulfite is not present in natural water.  In boiler feedwater conditioning sodium sulfite is fed to a boiler to remove dissolved oxygen and thus prevent pitting. For the reaction between sulfite and oxygen to proceed rapidly and completely, it is necessary to maintain an excess sulfite concentration at an elevated temperature. 

Theoretically, 3.5 Kg of chemically pure sodium sulfite are required to remove approx 400 gram of oxygen. The efficiency of the oxygen removal is estimated at 75 per cent to allow for oxidation in contact with air, blowdown losses, etc. Therefore it is estimated that 4.5 Kg of commercial sodium sulfite are required for 450 Gram of oxygen removed (or 10 ppm sulfite per 1 ppm dissolved oxygen.)

The use of sodium sulfite as a chemical deoxygenator is economical within certain limitations imposed by the dissolved oxygen content of the feedwater. If appreciable quantities of dissolved oxygen are permitted to enter the boiler, costs will be high if sulfite is relied on as the sole means of oxygen removal. Generally, costs are balanced by removal of as much of the oxygen as feasible by mechanical means, e.g. deaerator and by using sulfite to react with the residual oxygen.

To prevent corrosion and pitting in feed lines, closed heaters and economizers, it is desirable to feed the sulfite continuously to the boiler feedwater rather than directly to the boiler feedwater rather than directly to the boiler. Reaction between sulfite and oxygen is not instantaneous and the completion of the reaction is aided by the longer contact times provided by feeding sulfite to the feedwater.

Catalyzed sodium sulfite will, however, react almost instantaneously with dissolved oxygen even at cold water temperatures. Because of this property, catalyzed sulfite has found increased use in the treatment of cooling water, process water, distribution system, etc. for preventing oxygen corrosion.  

Product Application:

Enviro Guard Sulfite is a white granular material.

White, free flowing crystalline Odorless powder

Dechlorination for Ballast Water, pulp & paper, power, and textile water treatment plants
Boiler water treatment
Oxygen scavenger
Preservative
Pharmaceuticals
Flue gas desulfurization
Chemical manufacturing in the sulfonation process
Preservative in photo developer solutions
Product Dose:

Dose of Enviro Guard Sulfite can be controlled by this method :::  Because it readily reacts with oxygen to form sulfate, sulfite is not usually found in natural water systems. In its most common form, sodium sulfite, it is widely used as an oxygen scavenger in feedwater conditioning to prevent pitting in boilers; as a pulping or pulp-bleaching agent by the paper industry; to neutralize residual chlorine in potable water, sewage, industrial effluents, and textile process waters; and as a reducing agent in still other manufacturing processes. 

Sample water over 100°F will cause a false-high reading; therefore, quickly cool to room temperature before testing. To prevent a false-low reading caused by the reaction between sulfite and ambient air or dissolved oxygen, water samples should be capped while cooling and then tested without delay. An iodometric drop test is the most popular field method for determining sodium sulfite concentrations. 

Reagent packs, containing an instruction and chemicals only, may be purchased for use with buret setups. Note: Sulfide and ferrous iron cause positive interference; copper and nitrite cause negative interference.

Sulfite, Titrimetric Method(0-100ppm)

The test  for sulfite is based on the colour change end point reaction. At the end point reagent combines with the indicator to form a blue color. 

Apparatus Required

Buret, automatic, 25 ml    -  1 ( Sample Tube, Graduated, 25 mL, plastic w/cap and white dot )
Casserole porcelain, 210 ml  -  1
Cylinder, graduated, 50 ml  -  1
Measuring dipper (plastic)  -  1
Stirring rod, glass    -  1 

Chemicals Required

TK - 13 ::: RXSOL-62-5503-002
TK - 14 ::: RXSOL-62-5503-003
TK - 15 ::: RXSOL-62-5503-004  ( 1 ml =0.5 mg SO3 )

 

Procedure for Test

The water sample should be freshly obtained with as little contact as possible with air. Do not filter the sample, but cool it to room temperature (70 to 800F).
NOTE: 
Sample must be cooled to less than 100ºF (38ºC) to prevent high test results. 
Sample must be protected from air contact while cooling to prevent low test results. 

1. Measure 50 ml of the water sample with the graduated cylinder . For error free result Collect water to be tested in a clean, preferably large-mouthed, bottle to overflowing. Immediately cap and cool to room temperature. 

2. Add three or four drops of TK - 13 ::: RXSOL-62-5503-002  to the sample Swirl to mix. Sample should turn red. 

3. Add  TK - 14 ::: RXSOL-62-5503-003 Powder a dipper at a time, swirling after each dipper, until color changes from red to colorless. Add 2 more dippers. Swirl until dissolved.  ( Note : Use the plastic dipper to add TK - 14 ::: RXSOL-62-5503-003 to the sample. Add only one measure at a time and stir thoroughly between each addition of TK - 14 ::: RXSOL-62-5503-003. All the particle of TK - 14 ::: RXSOL-62-5503-003 may not dissolve and this may create a slight haze in the sample. Continue to add the TK - 14  in this manner until the red color disappears. It is not necessary that the sample solution be exactly neutralized, only that the sample turn colorless. When the sample is colorless, add one additional measure of TK - 14 ::: RXSOL-62-5503-003 and stir. )

4. Add TK - 15 ::: RXSOL-62-5503-004 Reagent dropwise, swirling and counting after each drop, until color changes from colorless to a faint but permanent blue. Always hold bottle in vertical position. 
This color change is taken as the endpoint. Record the ml of TK - 15 ::: RXSOL-62-5503-004 solution used. 

 

Calculation of Results

FORMULA:    ppm sulfite as SO3  = ml  of TK - 15 ::: RXSOL-62-5503-004  x       500    /  ml SAMPLE  

                        Using a 50 ml sample, sulfite, in parts per million as SO3  is equal to the ml of TK - 15 ::: RXSOL-62-5503-004 required multiplied by 10. 

 

Limitations of Test :::

This method is rapid and adaptable to field determinations.  It is affected by any oxidizable substances in the water such as organic matter sulfides and nitrites.  The presence of these interfering substances will cause the sulfite content obtained from this titration to by shown as a higher value than actually exists.  

Product Note:
The use of untreated water in a boiler can cause scale buildup and corrosion. Treating the boiler water with chemicals - known as boiler feed water treatment - will increase the life of the boiler and reduce maintenance costs. Scale is formed from calcium and magnesium salts that are carried in solution in the water used in the boiler. Treatment of the boiler water by raising the pH with the addition of alkaline salts – such as sodium or potassium hydroxide – will prohibit most of the calcium and magnesium salts from precipitating and causing scale buildup in the boiler. Sodium sulfite is a constituent of some boiler feed water treatments. This constituent acts as an oxygen scavenger. The presence of oxygen in boiler water will lead to corrosion of the boiler . A chelating agent, sodium hexametaphosphate is sometimes added to boiler water to inhibit hard water salts from precipitating to form scale. Hydrochloric acid is sometimes utilized in acid boils to remove scale form the boiler. 
Free Delivery / Supply Locations : 
Oman, Bahrain, Abu Dhabi, Ajman, Al Ain, Dubai, Ras Al-Khaimah, Ras al Khaimah, Fujairah, Sharjah, Umm Al Quwain, Fujairah, Ruwais, Mina (Port) Zayed, Khalifa Port, Kizad, Port Rashid, Jebel Ali Port, DP WORLD, Jebel Ali Free Zone, Khor Fakkan Container Terminal, Port Rashid, Jebel Ali Port, Mina Kalid Port, Khor Fhakan Port ( Khawr Fakkan, Khawr al-Fakkan ), Sharjah Creek, Ajman, Port of Hamriyah, Mina Zayed Port, Mussafah port, Khalifa Port, Umm al-Nar Port, Um Al Quwain Port, Saqr Port, Port of Fujairah, Dibba Port, Jebel Dhanna, Mina Al Hamriya, Mina Rashid, All United Arab Emirates